Evaluating Radiative Fluxes in Current Reanalyses using CERES EBAF-TOA and EBAF-Surface Ed4.0

Hailan Wang¹, Norman G. Loeb², Wenying Su², Fred G. Rose¹, Seiji Kato², David R. Doelling²

SSAI¹, NASA Langley Research Center²

The Fall 2017 CERES Science Team Meeting September 26-28, 2017

Introduction

- What is a reanalysis?
 - A consistent, global best estimate of atmospheric, land and ocean parameters obtained by combining model and observations in a data assimilation system
 - Widely used for various weather and climate studies
- Evaluation of reanalyses using observations:
 - In-situ (e.g. ARM, DYNAMO)
 - Satellite-based (e.g. CERES EBAF-TOA)
 - e.g. Wong (2014), Dolinar et al. (2016)

Data and Methodology

- CERES Ed4.0
 - EBAF-TOA; EBAF-Surface; SSF1deg Lite
- Reanalyses
 - MERRA-2; ERA-Interim; ERA5
- Analysis
 - Period
 - Jan2010-Aug2016
 - Evaluation:
 - Mean climate
 - Year-to-year variation

SWall**↑**

Diverse performance among the reanalyses;

SWall**↑**

- Diverse performance among the reanalyses;
- ERA5 shows considerable improvement over ERA-I in much of the tropics and subtropics.

Closeness: |ERA-I - CERES| - |ERA5 - CERES| | ERA5 closer/better; ERA5 worse

ERA5 better; ERA5 worse

SWall↑ SWclr**↑** SW CRE MERRA-2 ERA-I ERA5 EQ ERA-I vs. ERA5 30S 60S

OLRall

- Diverse performance among reanalyses;
- ERA5 shows substantial improvement over ERA-I:
 - ITCZ, SPCZ, land, NH storm track regions

OLRall OLRclr

 Reanalyses underestimate OLRclr over deep convective regions.

OLRclr **OLRall** LW CRE

Mean Climate (2010-2015): Surface

Reanalysis biases in Surface SWall

✓ reflect those in TOA SWall

ERA-I vs. ERA5

Mean Climate (2010-2015): Surface

LWall**Ψ** LWall↑

Reanalyses underestimate Surface LWall♥

ERA-I vs. ERA5

Year-to-year Variation

Global Mean of Deseasonalized Anomalies (5Mon RunMean)

TOA OLRall

- Better performance in LW than in SW;
- A considerable portion of the interannual variation is contributed by ENSO.

Year-to-year Variation: ENSO Anomalies

Very good agreement

TOA SWall♠: tcorr (CERES, MERRA-2)

TOA SWall♠ at 120°W0°N tcorr (CERES, MERRA-2): 0.70

TOA SWall**↑**

- Reanalyses are subject to the performance of their assimilating models, which are challenged in simulating processes over:
 - Tropical land
 - Subtropical stratocumulus regions
 - Extratropical oceans
 - Polar regions
- ERA5 shows considerable improvement over ERA-I in nonpolar regions.

TOA SWall**↑**

Total Cloud Fraction

-0.15-0.1-0.050.05 0.1 0.15 0.2 0.25

Regional biases in TOA SWall are:

0.95

0.9 0.8

0.7

0.5

0.3

0.2

- closely associated with those in clouds;
- similarly shown in TOA SW CRE and surface SWall , SWall ↑, SW CRE.

TOA LW CRE TOA OLR

ERA-I

EQ

ERA5

ERA5 minus

- LW better than SW;
- ERA5 is greater than ERA-I;

0.7

0.2

Lower corr is seen over tropical deep convective land regions & Tibet.

- LW better than SW;
- ERA5 is greater than ERA-I;
- Lower corr is seen over tropical deep convective land regions & Tibet.

ERA5 minus **ERA-I**

Year-to-year Variation: Standard Deviation

CERES MERRA-2 ERA-I ERA-5

Standard deviation

Anomalies associated with ENSO

Summary

- Current reanalyses:
 - well capture TOA radiative flux variations associated with ENSO as well as those over the NH land area,
 - show greater performance in LW than in SW.
- Current reanalyses are subject to the performance of their assimilating models in simulating cloud and radiative processes. Challenges remain over:
 - tropical deep convective regions, especially tropical land;
 - subtropical stratocumulus regions;
 - extratropical oceans;
 - Land surface albedo.
- ERA5 shows substantial improvement over ERA-Interim.